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The Examined Life and The Nature of Rationality

¢ Examined Life, Nozick’s third book ~ a book
bout ‘living and what is important in life’ (1989: 11)
has not made much impact on the philosophical
pild. However, his fourth, The Nature of Rationality
1993}, marks a return to issues of decision theory and
tionality, and so contributes to ongoing debates
thin the analytic tradition.

Nozick was the first to present Newcomb’s
oblem to the philosophical world, and his discus-
bn has remained a classic work in decision theory,
pphasizing the distinction between evidential and
usat decision theory. In The Nature of Rationality
introduces a new idea: symbolic utility. An action
decision may be symbolic — expressive of an
potion or atitude, for example — and so may have
ue not so much in its effects, but by its standing as
symbol. To illustrate, Nozick points out that for
me people minimum wage legislation may have
ue as a way of symbolizing the idea of helping the
bor, even if it turns out to be ineffective as a policy.
ing rationally, on Nozick’s view, 1s a matter of
aximizing decision-value’, which is a weighted sum
causal, evidential and symbolic utility (see DEeci-
DN AND GAME THEORY).

¢ also: KNOWLEDGE, CONCEPT OF; PERSONAL
BENTITY; RATIONAL CHOICE THEORY; SCEPTICISM
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NUMBERS

Numbers are, in general, mathematical entities whose
Junction is to express the size, order or magnitude of
something or other. Historically, starting from the most
basic kind of number, the positive integers (1,2, 3,... ),
which appear in the earliest written records, the notion
of number has been generalized and extended in several
different directions — often in the face of considerable
opposition.

Other than the positive integers, the most venerable
are the rational numbers (fractions), which were known
to the Egyptians and Mesopotamians. The discovery, by
Pythagorenn mathematicians, that there are lengths
that cannot be expressed as fractions occasioned the
intraduction of irrational numbers, such as the square
root of 2, though the Greeks managed only a geometric
understanding of these. The number zero was recog-
nized, first in Indian mathematics, by the seventh
century, the use of negative numbers evolved after this
time; and complex numbers, such as the square root of
—1, appeared first at the end of the Middle Ages.
Infinitesimal numbers were developed by the founders of
the calculus, Newton and Leibniz, in the seventeenth
century (and were later to disappear from mathematics
— for a time); and infinite numbers (ordinals and
cardinals) were introduced by the founder of modern set
theory, Cantor, in the nineteenth century.

The introductions of three of these kinds of number, in
particular, occasioned crises in the foundations of
mathematics. The first {concerning irrational numbers)
was finally resolved in the nineteenth century by the
work of Cauchy and Weierstrass. The second (concern-
ing infinitesimals) was also resolved then, by the work of
Weierstrass and Dedekind. The third (concerning
infinite numbers), which involves paradoxes such as
Russell’s, still awaits a convincing solution.

It is seemingly impossible to give a rigorous
definition of what it is to be a number. The closest
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one can get is a family-resemblance notion, with very
ill-defined boundaries.

Natural numbers

Rational and irrational numbers
Negative and complex numbers
Infinitesimal numbers
Transfinite numbers
Weierstrass and Dedekind
Set-theoretic reduction
Developments from logic
Number in general

SO~ RN -

1 Natural numbers

All human societies would appear to have some form
of counting, however limited, both for size -
cardinality (one, two, three,...) — and for order —
ordinality (first, second, third,...). The recognition
that an infinitude of positive integers could be used
for these purposes was already in place in the earliest
civilization from which we have written records, that
of Egypt circa the fourth millennium BC. The
investigation of basic arithmetic operations (addition,
multiplication and so on) was also well under way
then. This was continued in the next great Middle
Eastern civilization, that of Mesopotamia (Babylon),
circa the second millennium Bc. The investigations
were greatly facilitated by the Mesopotamian inven-
tion of place-notation, that is, the idea that a single
numeral can represent different quantities depending
on where it occurs in a string of numerals. Thus, for
example, in decimal notation, the first 2° of ‘2,121’
represents two thousands and the second represents
two tens. (The Mesopotamians actually preferred a
sexagesimal to a decimal base.)

The natural nambers comprise the positive integers
together with zero. The idea of zero as a number was
not to be found in either of these civilizations,
although the Mesopotamians did sometimes leave a
gap where we would now write a zero. (Thus ‘22’
might represent 202 or 2,020, and so on.) Though the
origin of the idea is uncertain, zero was certainly
being used by the seventh century ap by Indian
mathematicians, who had also developed place-
notation and used a decimal base. They therefore
possessed, in effect, our modern number system
{though the symbols they used were different). This
system was taken up in the Arabian civilization
around the eighth century, and thence passed into
Europe around the twelfth.

2 Rational and irrational numbers

Positive integers quantify wholes. Once one starts to
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measure, it becomes clear that a way is required to
quantify parts. Rational numbers, as ratios of natural
numbers (with non-zero denominator), clearly serve
this function. These were known to the Egyptians, at
least in the form of unit fractions (of the form 1/n)
and, in a more sophisticated and general form, to the
Mesopotamians. Decimal fractions (of the form 0.23)
appear to have been developed by Arabic mathema-
ticians, and by the time we reach Stevin in late
sixteenth-century Europe, the modern computational
system for rational numbers is essentially in place.

The creation of modern mathematics is usually
reckoned to have occurred in Ancient Greece in the
second half of the first millennium Bc. What was
distinctive about the Greek approach was that math-
ematics was freed from its practical roots and took on
a purely theoretical form. In particular, the central
concern of Greek mathematics was proof, especially
proofs in geometry. As far as arithmetic goes, the first
part of this epoch was dominated by Pythagoreanism,
according to which everything can be explained in
terms of the positive integers. (It follows that rational
numbers are of little theoretical importance: given
two lengths to compare, if one chooses one’s unit of
measurement small enough, the lengths will be
integral.)

The discovery that the Pythagorean assumption
was wrong came as a distinct shock. Most simply, the
diagonal of a unit square (whose length is the square
root of two) is not commensurable with its sides. The
proof of this (one of the first reductio arguments in the
history of mathematics) is now celebrated. It is not
known who discovered it, though it was probably one
of the later Pythagoreans, ¢.400 Bc. At any rate, it
inaugurated the first of three crises in the foundations
of mathematics that have been associated with the
introduction of a new kind of number.

The new numbers in this case are irrational
numbers (that is, numbers which cannot be written
as a ratio of integers — written as decimals they are
infinite and non-repeating), such as the square root of
two (and pi (), although the irrationality of this was
not proved until the eighteenth century by Lambert).
They are required, together with rational numbers, for
general quantification of length: in fact, the only
conception of such magnitudes available to the
Greeks was as geometric lengths. Given this repre-
sentation, some geometric account of arithmetic
operations had to be given. The hardest of these is
division, which was solved by Eudoxus (¢.360 Bc) in
his theory of proportions, given in book 5 of Euclid’s
Elements. But even for Eudoxus, ratios were not
entities in their own right. Operations which treat
irrational numbers in the form of surds (expressed in
ways such as v/2, ¥/71), as bona fide entities, can be
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found in Indian mathematics and, in particular, in the
seventh-century mathematician Brahmagupta. Some
use of surds was made by Arabic mathematicians, but
their use did not become common until the sixteenth
century (for example, in the work of Stevin and
Cardan). A clear statement to the effect that irrational
numbers are first-class numerical citizens can be
found in Newton, in the seventeenth century; how-
ever, an adequate understanding of what this citizen-
ship amounted to had to wait until the nineteenth
century.

3 Negative and complex numbers

Subtraction had been familiar to mathematicians
since the earliest times. The idea that a sensibie
quantity might itself be negative, however - and what
the sense of it might be — took a long time to catch on.
Negative numbers, the rules for operating with them,
and their use as roots of equations appear in
Brahmagupta, and were consequently known to
Arabic mathematicians — though they did not use
them as roots of equations. The first time they appear
in this way in European mathematics is in the work of
fifteenth-century mathematician Nicholas of Chuquet
{who, however, did not allow zero to be a root!). Even
Cardan, a century later, who employed negative roots
extensively, called them ‘fictional’. The idea that
negative numbers might correspond to direction
reversal is to be found in the early seventeenth-
century mathematician, Girard; but, even after the
invention of analytic geometry by Descartes a little
later, many mathematicians simply ignored the
negative parts of the plane. And even as late as the
middle of the eighteenth century some textbook
writers were still disputing the claim that the product
of a pair of negative numbers is positive.

Once the use of negative numbers became common
mathematical practice, the thought that there might
be a new kind of number to provide for their square
roots was not far behind. If we call all of the numbers
mentioned so far rea/l numbers, and write the square
root of —1 as i (following Euler), the product of i with
any real number is called an imaginary number. More
generally, the sum of a real number and an imaginary
number (a+1b) is called a complex number. One of
the earliest occurrences of complex numbers in
mathematics js in the work of Cardan, who observed,
as we would now put it, that a cubic equation with a
real root may also have complex roots, though
Cardan himself regarded this observation as useless.
A few years later, Bombelli articulated the use of
complex numbers (in the same context) much further.
Opposition to them did not then cease, however; for
example, their use was frowned upon by Newton. But

by the time of, and especially in the work of, Euler, in
the eighteenth century, complex numbers had been
shown to have numerous uses, both as the solutions of
equations and elsewhere — for example, in important
relationships between trigonometric functions. And
by the time that Gauss, in the early nineteenth
century, showed that every polynomial equation with
complex coefficients has complex roots, complex
numbers were well entrenched. With the development
of electromagnetic theory later in the century,
complex numbers were shown to be capable of
representing even physical quantities (for example,
impedance).

The problem of what sense to make of complex
numbers was also solved by Gauss and later
contemporaries, such as Argand. The complex
number x+iy could be thought of as the point
{x,y) in two-dimensional Euclidean space (now
usually called the Argand plane), with the arithmetic
operations on complex numbers defined in a suitable
way. This prompted the idea that points in a higher-
dimensional space could also be thought of as
numbers of a certain kind. Defining a suitable notion
of multiplication for points in a three-dimensional
space turned out to be impossible, but the problem
was solved for four dimensions by the Irish math-
ematician William Hamilton later in the nineteenth
century. Hamilton defined a class of numbers known
as ‘quaternions’, of the form x+iy 4 jz+ kw, where
ijk =i* =% =k? = —1. The properties of quaternions
were investigated for some years, but no real use was
found for them, so the investigations lapsed. By this
time, the observation that a somewhat different set of
operations on points in Euclidean space might be
fruitful had been made, and vector algebra was born.
(If one thinks of complex numbers as two-dimen-
sional vectors, then complex addition and vector
addition are the same thing, but complex multi-
plication and the various vector multiplications are
distinct.)

4 Infinitesimal nsmbers

The numbers discussed so far have all been finite. But
numbers of some kinds are infinite — or their intuitive
inverse; infinitesimal. It is sometimes (dubiously)
claimed that infinitesimals can be found in Greek
mathematics. What certainly can be found, from
about the third century Bc on, is a method called ‘the
method of exhaustion’, (probably) invented by
Eudoxus and developed by Archimedes. The main
purpose of this method is the computation of areas
and volumes of non-rectilinear geometric figures, and
requires their approximation by rectilinear figures.
For example, a circle is approximated by a regular
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polygon inscribed within it. As the length of the sides
of the polygon decreases (and the number of sides
increases) the approximation gets closer. By the late
sixteenth century we find mathematicians such as
Stevin and Wallis suggesting, in effect, that if we make
the sides of the polygon infinitesimally small, the
approximation will be exact — or, at least, will differ
only infinitesimally from the true value. Hence, a new
kind of number, infinitesimals, had to be recognized,
to quantify infinitesimal lengths.

The use of infinitesimals in essentially this way was
developed by Newton and Leibniz in the next century
as the foundation of modern calculus (see ANALYSIS,
PHILOSOPHICAL ISSUES IN §1). Though their inven-
tions were independent, and used quite different
notations, the essential ideas were the same. For
example, to determine the gradient of the curve y = x*
at the point x = a, we consider a point on the curve an
infinitesimal distance 4 away along the x-axis. The
slope of the line joining these two points is

(a+d)’—a* 2ad+d’
d ]
=2a+d

but since d is infinitesimally small, we can disregard it.
Hence the gradient is 2a.

The power of infinitesimal methods was so great,
in both pure and applied mathematics, that they soon
became entrenched. However, many people — most
notably Berkeley — were severely critical. In particu-
lar, infinitesimals had at the same time to be both
non-zero (since one divided by them) and zero (since
one ignored them). This dilemma inaugurated the
second foundational crisis in mathematics associated
with the introduction of a new kind of number. But
this one would have to wait only 200 years for a
solution.

5 Transfinite numbers

It is clear that there are infinite quantities in math-
ematics, and hence that there must be a size that these
quantities can be, namely, infinite. But for most of the
history of mathematics, infinitude was thought of as
mathematically indeterminate, and hence there was
little to be said about the quantity ‘infinity’. (One
does, however, sometimes find mathematicians — even
of the stature of Euler — taking it as a definite
quantity, in particular, as the reciprocal of zero.) Even
in the heyday of the infinitesimal calculus, infinite
numbers played little part (though Leibniz certainly
held that the reciprocals of distinct infinitesimals were
distinct infinite numbers). The recognition of different
orders of infinity, and consequently of the sense of
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infinite numbers, therefore came as another highly
contentious idea.

This recognition is almost entirely due to Georg
Cantor in the late nineteenth century. He realized
that, given some iterable operation (for example,
forming the set of topological limit points of some set
of points), it made sense to consider the result of
having applied the operation an infinite number of
times, and then to apply the operation again, and
again. . .indefinitely (see CANTOR, G. §1). To quan-
tify this ordering, Cantor introduced a new class of
infinite numbers, {ransfinite ordinals, the least of
which he denoted by a lower-case omega, o (see
SET THEORY §2). He also defined arithmetic opera-
tions on these numbers which generalize the opera-
tions on finite numbers, but which have rather
unusval properties. For example, addition is not
commutative: @+ 1# 1 + .

Having generalized the notion of order into the
infinite, Cantor next generalized the notion of size. To
do this he needed a criterion of size that would work
(even) in infinite domains. He adopted the criterion
(also suggested by FreEGE (§8)) that two collections
have the same size just if their members can be put
into one-to-one correspondence (that is, each member
of either collection corresponds to exactly one
member of the other). He observed that adding
members to an infinite set may not increase its size.
(This fact had been noted by some previous
mathematicians — for example, Galileo — who thought
it so absurd that they rejected infinity as a quantity.)
In another of the most famous reductio arguments in
the history of mathematics, Cantor also established
that for any infinite collection, there is one of greater
size. This is now called ‘Cantor’s theorem’ (see
CanTORr’S THEOREM). To quantify the different sizes
Cantor introduced a new kind of infinite number,
transfinite cardinals (see SET THEORY §3), denoted by
the Hebrew letter aleph (R) with a subscript (Xy being
the smallest, the size of the natural numbers); and
defined arithmetic operations on these which, again,
generalize the finite case. These operations also have
striking properties: for example, double any aleph and
you get what you started with.

It should be noted that natural numbers can be
thought of indifferently as ordinals or cardinals. This
is because, canonically, we count the size of a finite
collection by ordering, and its cardinality is » just if the
last object in the ordering is the nth. However,
transfinite ordinals and cardinals are quite distinct
since, as just observed, if one adds further objects toan
ordered set, the size may remain the same. Transfinite
ordinal and cardinal arithmetics are also quite
distinct. Cardinal addition, for example, is commu-
tative, where ordinal addition is not. It is worth noting
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that there are very simple questions concerning basic
transfinite arithmetic operations that are still unan-
swered (see CONTINUUM HYPOTHESIS).

Cantor’s introduction of transfinite numbers into
mathematics did not entail the use of infinitesimals.
This is because the unusual properties of (cardinal
and ordinal) multiplication allow no obvious sense to
be given to the notion of division, and so not to
reciprocation. However, the use of infinite numbers
brought its own problems. In particular, the totality of
all ordinal numbers is an ordered collection and hence
must have an ordinal, which must be greater than, and
so distinct from, all ordinals. Similarly, the totality of
all objects must have the largest possible cardinal, but,
by Cantor’s theorem, there is a larger. These para-
doxes are now called the Burali-Forti paradox and
Cantor’s paradox, respectively; Russell’s paradox,
concerning the set of all sets that are not members
of themselves, is a stripped-down version of Cantor’s
(see PARADOXES OF SET AND PROPERTY 8§4). They
heralded the third crisis in the foundations of math-
ematics associated with the introduction of a new
kind of number; a crisis which, unlike the first two, is
as yet not satisfactorily resolved. These paradoxes
fuelled the rejection of Cantor’s ideas by some,
including Kroneker; but despite this, they were
absorbed into orthodox mathematics within about
fifty years.

6 Weierstrass and Dedekind

The final resolution of the first two crises we met
(concerning irrationals and infinitesimals) took place
in the nineteenth century, a period when mathema-
ticians became particularly concerned with the
rigorous foundations of their subject. In this context,
the work of Weierstrass and DEDEKIND is particularly
significant.

Early in the nineteenth century, the notion of a
‘limit’ appeared in Cauchy’s formulation of the
calculus. His method differed from that set out in §4
above as follows: instead of taking d to be some
infinitesimal quantity, we let it be a finite quantity,
and then consider the limit of what happens when d
approaches zero (the limit being a quantity that may
be approached as close as we please, though never,
perhaps, attained). Despite the fact that Cauchy
possessed the notion of a limit, he mixed both
infinitesimal and limit terminology, and it was left
to Weierstrass, later in the century, to replace all
appeals to infinitesimals by appeals to limits. At this
point infinitesimal numbers disappeared from math-
ematics (though they would return, as we shall see).

Weierstrass also gave the first modern account of
negative numbers, defining them as signed reals, that

is, pairs whose first members are reals and whose
second members are ‘sign bits’ (‘+” or ‘-’), subject to
suitable operations.

A contemporary of Weierstrass, Tannery, gave the
first modern account of rational numbers. An
‘equivalence relation’ is a relation R that is reflexive
{xRx), symmetric (if xRy then yRx) and transitive (if
xRy and yRz then xRz). Given an equivalence
relation on a domain of objects, an ‘equivalence class’
is the set of all those things in the domain related to
some fixed object. Tannery defined the rationals as
equivalence classes of pairs of natural numbers (the
second of which is non-zero), under the equivalence
relation ‘~’ (tilde), defined as follows.

(m,n) ~ (r,s) iff ms=rn

The problem of irrational numbers was finally
solved independently by Weierstrass, Cantor and
Dedekind, who gave different but equivalent con-
structions of real numbers. Weierstrass’ is in terms of
infinite decimal expansions; Cantor’s is in terms of
convergent infinite sequences of rationals. Dedekind’s
construction is the simplest: consider any splitting of
the rational numbers (which can be taken to include
the integers, since the integer » may be identified with
the rational number n/1) into two non-empty disjoint
collections L (‘left’) and R (‘right’), such that anything
less than a member of L is in L, and anything greater
than a member of R is in R. This pair is now called a
‘Dedekind cut’ {or ‘section’). Real numbers (including
irrational numbers) can be thought of as such sections
(or just one of their parts).

Dedekind also gave the first axiom system for the
natyral numbers, in terms of an initial number and
the successor operation (+1). In modern form, the
axioms are as follows:

(1) 0is a number.
(2) The successor of any number is a number.
(3) 0 is the successor of no number.

(4) Any two numbers with the same successor are
the same.

(5) If 0 has some property, and the successor of any
number with that property also has it, then all
numbers have it.

These axioms, together with the recursive definitions
for addition and multiplication (also given by
Dedekind), are now usually named after Peano, who
gave a formalized version a few years later.

7 Set-theoretic reduction

The drive for rigour in the foundations of number
theory reached its height in the reduction of all
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numbers to sets, due to the logicists Frege, Russell and
Whitehead at the turn of the twentieth century (see
LogicisMm). The key to this was a set-theoretic
definition of cardinal and ordinal numbers. The
cardinal numbers were defined as equivalence classes
of sets under the equivalence relation ‘can be put into
one-to-one correspondence with’. (For Russell and
Whitehead, this was restricted to sets of fixed type, in
an attempt to avoid the paradoxes of infinite number —

see THEORY OF TYPES.) A ‘well-ordering’ on a setisan -

ordering such that every non-empty subset has a least
member in the ordering (see SET THEORY §2). Two
well-ordered sets are ‘order-isomorphic’ if they can be
put into a one-to-one correspondence that preserves
the ordering. The ordinal numbers were defined as the
equivalence classes of well-ordered sets (of a given
type) under the equivalence relation of order-
isomorphism. Cardinal and ordinal arithmetic opera-
tions were defined in an appropriate fashion.

Given the ordinals, other numbers could then be
defined in a relatively straightforward way. Natural
numbers are the finite ordinals (which can be shown
to satisfy the Peano axioms — see §6 above); rational
numbers can be defined by the Tannery construction;
real numbers as Dedekind sections; negative numbers
as Weierstrassian pairs; complex numbers can be
defined as pairs of signed reals, thought of as points
on the Argand plane. In each case, arithmetic
operations can be defined in natural ways.

Since the Frepe/Russell reduction, several other
non-equivalent, but equally good, definitions of the
cardinal and ordinal numbers have been discovered
(and in virtue of this, the claim that these numbers
just are certain sets is difficult to maintain). The most
elegant of these is due to von Neumann. According to
this, each ordinal is simply the collection of all smaller
ordinals. (Thus, zero is simply the empty set, the least
infinite ordinal is the set of natural numbers, and so
on.) Cardinal numbers are identified with ‘initial’
ordinals, that is, least ordinals of each size.

8 Developments from logic

Work in mathematical logic in the twentieth century
has provided several notable developments bearing on
numbers. Three are particularly important. The first
was the proof by Gédel in 1931 that the Peano
axioms, and all other consistent axiom systems for
arithmetic, are incomplete, in the sense that there are
truths of arithmetic that cannot be proved from the
axioms — at least if the underlying logic is first-order
(see GOGDEL’s THEOREMS). The axioms are complete if
the underlying logic is second-order and the induction
principle (5) is formulated as a second-order axiom
and not just a first-order schema; but second-order
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logic is not itself axipmatizable (see SECOND- AND
HIGHER-ORDER LoGIcs §1). This raises profound
questions about the nature of both numbers and our
knowledge thereof, that fall outside the bounds of this
entry.

The second development concerns the paradoxes
surrounding transfinite numbers. The orthodox view
that has emerged this century is that embedded in
Zermelo—Fraenkel set theory (ZF). According to this,
there just is no totality of all ordinals, all sets or other
‘large’ collections, and so the question of their size
does not arise. Although this account provides
enough set theory for most mathematics (though
not all: category theory appears to require large sets
of just this kind), it can hardly be said to be
conceptually adequate. For example, standard logic
defines the sense of a quantifier in terms of the
domain (totality) over which it ranges. It is therefore
unclear what the sense of the quantifiers of ZF is, if,
as it claims, there is no such totality. (See Priest 1987.)

The third development is due to Robinson and is
called ‘nonstandard analysis’ (see ANALYSIS, NON-
STANDARD). As was proved originally by Léwenheim
and Skolem, (first-order) theories of number have
nonstandard models (see LOWENHEIM—SKOLEM THE-
OREMS AND NONSTANDARD MODELS). In particular,
any theory of the reals will have such models.
Robinson showed that in all of these models, there
are non-zero numbers that are smaller than any real
number: infinitesimals. Using these, he demonstrated
that the reasoning of the infinitesimal calculus {(which
is much more intuitive than limit reasoning) can be
interpreted in a perfectly consistent manner. Hence,
infinitesimals have been rehabilitated as perfectly
good numbers.

9 Number in general

The preceding review of the development of the
notion of number naturally prompts the question of
what a number is. One might interpret this as the
question of whether numbers are Platonic objects,
mental constructions, or nothing more than mystified
numerals. This is a central issue in the philosophy of
mathematics.

Alternatively, in virtue of the plethora of kinds of
numbers we have seen, one might interpret the
question as asking what makes entities of certain
kinds, but not others, numbers. Beyond the rather
vague characterization with which this article began,
it seems difficult to give a general characterization of
number. The most fundamental numbers (both
historically and conceptually), the natural numbers,
measured size (or order), were subject to distinctive
operations (such as addition) and could be the roots
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of equations. Each of these central features has played
a 1ole in generating new kinds of numbers (different
concerns being dominant on different occasions). The
result is a collection of entities which are related by
family resemblance (as observed by Wittgenstein in
§67 of Philosophical Investigations), though the
boundaries of the family seem somewhat arbitrary.
It is difficuit to see why, for example, complex
numbers (or quaternions) should be called numbers,
but not vectors or numerical matrices; both of these
share the central features of natural numbers,

This conclusion is reinforced by recent work by
Conway (1976). He gives a (transfinite) recursive
construction that generalizes both the Dedekind
construction of the reals and the von Neumann
construction of ordinals. Essentially, 2 number is any
pair, {L, R), such that all the members of L and R are
numbers, and every member of R is greater than or
equal to (=) every member of L {(see ANALYSIS,
PHILOSOPRICAL ISSUES IN §2). ‘=’ and the arith-
metic operations are also defined in a natural
recursive manner. The construction generates vit-
tuafly all the numbers we have met in this article,
including infinitesimals, but excluding, notably, the
complex numbers (and if cardinals are to be identified
with initial ordinals, a non-uniform definition of
arithmetic operations is necessary). Moreover, the
construction generates many novel numbers, for
example, notably, numbers obtained by applying the
full range of real-number operations to infinite
numbers, for example, w— 1, /o, which make no
sense on the usual understanding. Moreover, a simple
generalization of the construction (dropping the
ordering condition on L and R}, produces even more
number-like objects (which Conway calls ‘games’,
because, in a certain sense, they code the strategic
possibilities in a two-person game).

Just conceivably, a unifying account of number
might eventually be found, but in the meantime the
emergence of new kinds of numbers seems likely. For
example, there are nonstandard inconsistent models
of arithmetic which contain inconsistent numbers
(natural numbers with inconsistent properties). These
have some notable applications. For example, some of
them can be shown to provide solutions for arbitrary
sets of simultaneous linear equations. (See Mortensen
1995) And just as the existence of nonstandard
models of analysis made infinitesimals legitimate, so
might these legitimize the notion of an inconsistent
number.

See also: ANALYSIS, PHILOSOPHICAL ISSUES IN;
ANTIREALISM IN THE PHILOSOPHY OF MATHEMATICS;
ARITHMETIC, PHILOSOPHICAL ISSUES IN; LoGICAL
AND MATHEMATICAL TERMS, GLOSSARY OF; REALISM

IN THE PHILOSOPHY OF MATHEMATICS; SET THEORY,
DIFFERENT SYSTEMS OF
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GRAHAM PRIEST

NUMENIUS (fI. ¢. mid 2nd
century AD)

Numenius was a Platonist philosopher. He came from
Apamea (Syria) and wrote in Greek. His work — now
lost — is usually considered Neo-Pythagorean in
tendency, and exercised a major influence on the
emergence of Neoplatonism in the third century. A
radical dualist, he postulated the twin principles of god
— a transcendent and changeless intellect, equated with
the Good of Plato’s Republic — and matter, identified as
the Pythagorean Indefinite Dyad: god is good, matter
evil. In addition to this supreme god, he added at a
secondary level a creator-god, one of whose aspects is
the world-soul, itself further distinguished into a good
and an evil world-soul. He had a strong interest in
Oriental wisdom, especially Judaic, and famously called
Plato ‘Moses speaking Attic'.

1 Life, work and influence

2 Metaphysics

1 Life, work and influence

Nothing is known of Numenius’ life, but he can be
dated with reasonable accuracy by the fact that he is
attested as the teacher of one Harpocration, who was
also influenced by the Athenian Platonist Atticus,
who in turn flourished in the Ap 170s. He is often
mentioned in conjunction with a ‘companion’,
Cronius, who was presumably associated with his
school, and who may possibly be the addressee of
Lucian’s treatise on Peregrinus,

Of his works none has survived, but some extracts
of his dialogue On the Good are preserved by Eusebius
in his Preparation for the Gospel, as also are some
considerable passages from a lively polemical work,
On the Apostasy [‘Diastasis'] of the Academics from
Plato, which helps to clarify Numenius’ own position,
while providing some useful data on the New
Academy. Alongside this, we know of the works On
the Indestructibility of the Soul and On the Secret
Doctrines of Plato, treatises On Numbers and On
Place, and a work called Epops, or “The Hoopoe’,
which probably embodies a pun on epopteia (mystical
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vision). We also have an extended account of his
doctrine on matter preserved by the late Roman
commentator on Plato’s Timaeus, CALcCIDIUS, who
may well be more extensively indebted to him than he
acknowledges.

His philosophical importance is considerable. He
was a major influence, through the mediation of
Ammonius Saccas (not to be confused with Ammo-
nius, son of Hermias), on the father of Neoplatonism
Plotinus and his followers Amelius and Porphyry, as
well as the Christian theologian Origen (see
NEOPLATONISM §1; PORPHYRY §4; OrIGEN). His
Pythagoreanism consists of presenting Plato as a
disciple of Pythagoras (see, for example, fragments 7,
24.57), although without derogating from Plato’s
greatness (as was done by more extreme Pythagor-
eans, such as Moderatus of Gades).

Numenius was much interested in the wisdom of
the East and in comparative religion. He attracted the
interest of Church Fathers by his references to Jahveh,
Moses and even Jesus (fr. 1). Indeed, he described
Plato as “Moses speaking Attic’ (fr. 8), which seems to
imply an acceptance of something like Philo’s whole-
sale allegorization of the Pentateuch (see PHiLO OF
ALEXANDRIA §1). There has been speculation that he
was himself of Jewish stock — his hospitality to the
Jewish tradition is certainly notable — but this is not a
necessary inference. Numenius may simply be reflect-
ing the syncretistic religious and philosophical milieu
in which he lived.

2 Metaphysics

Numenius’ views on ethics and logic are not known
(although his ethical stance may be assumed to be
austere), so we may confine ourselves to his meta-
physics and psychology. He is at odds with previous
Pythagoreans in maintaining a radical dualism
between the first principles of god (the Monad, the
Good) and matter (the Dyad), instead of subordinat-
ing the material Dyad to the all-generating Monad, as
is done by his Pythagoreanizing predecessors from
Eudorus through Moderatus to Nicomachus of
Gerasa. Numenius’ dualism allies him rather with
Plutarch and Atticus, and leads him, like them, to
postulate an evil world-soul, derived from a reading
of Plato (Laws X) to balance the beneficent world-
soul (see PLUTARCH OF CHAERONEA §§3—4).
Numenius proffered a system of three levels of
spiritual reality: a primal god {the Good, or the
Father), who is almost supra-intellectual; a secondary,
creator-god (the demiurge of Plato’s Timaeus); and a
world-soul. In this he anticipates to some extent
Plotinus, although he was more strongly dualist than
Plotinus in his attitude to the physical world and




